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Table 1. Performance overview of ADVMOE (our proposal) vs. baselines on various datasets and model backbone architectures. The
model scale is fixed at r = 0.5 for Dense-CNN, Sparse-CNN and Moe-CNN (denoted with the symbol � , since they are fairly comparable
to each other) compared to Dense (r = 1.0, denoted with the symbol • ). For train- and test-time attack generations, we adopt an attack
strength of ✏ = 8/255 for CIFAR-10 and CIFAR-100, and ✏ = 2/255 for TinyImageNet and ImageNet. We evaluate RA (robust
test accuracy) against 50-step PGD attack [24], SA (standard test accuracy), and GFLOPS (FLOPS ⇥109) per test-time example (test-time
inference efficiency) for each model. In each (dataset, backbone) setup, ¨ we highlight the best SA and RA over all baselines per model
scale in bold, and ≠ we mark the performance better than AT (Dense) in green . Results in the format of a±b provide the mean value a

and its standard deviation b over 3 independent trials.
Method Backbone RA (%) SA (%) GFLOPS(#) Method Backbone RA (%) SA (%) GFLOPS (#)

CIFAR-10

•AT (Dense)

ResNet-18

50.13±0.13 82.99±0.11 0.54 •AT (Dense)

WRN-28-10

51.75±0.12 83.54±0.15 5.25
�AT (S-Dense) 48.12±0.09 80.18±0.11 0.14 (74%#) �AT (S-Dense) 50.66±0.13 82.24±0.10 1.31 (75%#)
�AT (Sparse) 47.93±0.17 80.45±0.13 0.14 (74%#) �AT (Sparse) 48.95±0.14 82.44±0.17 1.31 (75%#)
�AT (MoE) 45.57±0.51 78.84±0.75 0.15 (72%#) �AT (MoE) 46.73±0.46 77.42±0.73 1.75 (67%#)
� ADVMOE 51.83 ±0.12 80.15±0.11 0.15 (72%#) � ADVMOE 55.73 ±0.13 84.32 ±0.18 1.75 (67%#)

•AT (Dense)

VGG-16

46.19±0.21 82.18±0.23 0.31 •AT (Dense)

DenseNet

44.52±0.14 74.97±0.19 0.07
�AT (S-Dense) 45.72±0.18 80.10±0.16 0.07 (77%#) �AT (S-Dense) 38.07±0.13 69.63±0.11 0.02 (71%#)
�AT (Sparse) 46.13±0.15 79.32±0.18 0.07 (77%#) �AT (Sparse) 37.73±0.13 67.35±0.12 0.02 (71%#)
�AT (MoE) 43.37±0.46 76.49±0.65 0.12 (61%#) �AT (MoE) 35.21±0.74 64.41±0.81 0.03 (57%#)
� ADVMOE 49.82 ±0.11 80.03±0.10 0.12 (61%#) � ADVMOE 39.97±0.11 70.13±0.15 0.03 (57%#)

CIFAR-100

•AT (Dense)

ResNet-18

27.23±0.08 58.21±0.12 0.54 •AT (Dense)

WRN-28-10

27.90±0.13 57.60±0.09 5.25
�AT (S-Dense) 26.41±0.16 57.02±0.14 0.14 (74%#) �AT (S-Dense) 26.30±0.10 56.80±0.08 1.31 (75%#)
�AT (Sparse) 26.13±0.14 57.24±0.12 0.14 (74%#) �AT (Sparse) 25.83±0.16 57.39±0.14 1.31 (75%#)
�AT (MoE) 22.72±0.42 53.34±0.61 0.15 (72%#) �AT (MoE) 22.94±0.55 53.39±0.49 1.75 (67%#)
� ADVMOE 28.05 ±0.13 57.73±0.11 0.15 (72%#) � ADVMOE 28.82 ±0.14 57.56±0.17 1.75 (67%#)

•AT (Dense)

VGG-16

22.37±0.15 52.36±0.17 0.31 •AT (Dense)

DenseNet

21.72±0.13 48.64±0.14 0.07
�AT (S-Dense) 20.58±0.13 48.89±0.14 0.07 (77%#) �AT (S-Dense) 16.86±0.21 39.97±0.11 0.02 (71%#)
�AT (Sparse) 21.12±0.22 48.03±0.17 0.07 (77%#) �AT (Sparse) 17.72±0.14 41.03±0.16 0.02 (71%#)
�AT (MoE) 19.34±0.43 45.51±0.75 0.12 (61%#) �AT (MoE) 14.45±0.45 36.72±0.71 0.03 (57%#)
� ADVMOE 21.21±0.21 48.33±0.17 0.12 (61%#) � ADVMOE 23.31 ±0.11 48.97 ±0.14 0.03 (57%#)

Tiny-ImageNet

•AT (Dense)

ResNet-18

38.17±0.14 53.81±0.16 2.23 •AT (Dense)

WRN-28-10

38.82±0.15 55.30±0.19 21.0
�AT (S-Dense) 36.29±0.16 52.15±0.13 0.55 (75%#) �AT (S-Dense) 37.09±0.12 54.83±0.16 5.26 (75%#)
�AT (Sparse) 36.11±0.13 50.75±0.17 0.55 (75%#) �AT (Sparse) 37.32±0.14 54.32±0.23 5.26 (75%#)
�AT (MoE) 34.41±0.31 47.73±0.41 0.75 (68%#) �AT (MoE) 33.31±0.41 49.91±0.52 7.44 (65%#)
� ADVMOE 39.99 ±0.12 53.31±0.14 0.75 (68%#) � ADVMOE 40.15 ±0.15 55.18±0.09 7.44 (65%#)

ImageNet

•AT (Dense)

ResNet-18

44.64±0.14 60.32±0.15 1.82 •AT (Dense)

WRN-28-10

45.13±0.14 60.97±0.16 16.1
�AT (S-Dense) 41.19±0.16 58.32±0.12 0.48 (74%#) �AT (S-Dense) 41.72±0.15 58.98±0.18 4.04 (75%#)
�AT (Sparse) 40.87±0.15 58.22±0.13 0.48 (74%#) �AT (Sparse) 39.88±0.18 59.21±0.14 4.04 (75%#)
�AT (MoE) 35.57±0.73 55.47±0.66 0.67 (63%#) �AT (MoE) 37.42±0.44 56.44±0.71 5.15 (68%#)
� ADVMOE 43.32 ±0.12 59.72±0.17 0.67 (63%#) � ADVMOE 46.82 ±0.11 58.87±0.07 5.15 (68%#)

than an MoE pathway (r = 0.5). Second, we observe that
ADVMOE has a preference on wider models. For instance,
when WRN-28-10 (the widest model architecture in exper-
iments) is used, ADVMOE yields better robustness over the
Dense counterpart across all the dataset setups. Third, we
also observe that the direct AT application to MoE-CNN,
i.e., AT (MoE), is worse than AT (S-Dense) and ADVMOE
in all setups. This is consistent with our findings in Sec. 4.
We remark that although the usefulness of AT (MoE) was
exploited in [30] for the MoE-type ViT, it is not effective
for training MoE-type CNNs anymore. Fourth, ADVMOE
can retain the high inference efficiency for MoE-CNN, as
evidenced by the GFLOPS measurements in Tab. 1. Com-
pared to S-Dense, MoE-CNN introduces minor computa-

tional overhead due to the routing system. However, it
saves more than 50% of the inference cost vs. Dense. This
implies that our proposal ADVMOE can preserve the effi-
ciency merit of the MoE structure while effectively improv-
ing its adversarial robustness.

Robust evaluation on AutoAttack [68]. In Tab. 2, we
provide additional experiments evaluated by AutoAt-
tack [68] (termed RA-AA), a popular robustness evalua-
tion benchmark [69]. The experiment setting in Tab. 2 fol-
lows Tab. 1. We report RA-AA on CIFAR-10 and
CIFAR-100 with ResNet-18 and WRN-28-10. As we
can see, although AutoAttack leads to a lower RA-AA
compared to RA evaluated using PGD attacks (termed
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Challenge: Naively applying AT to
MoE-CNN is even less effective than
an AT-resulted small dense network.

Ø Robustness Dissection: Routers vs. Pathways

Insight 1: Robustifying routers
improves the overall robustness of
MoE-CNN but is NOT as effective
as AT-resulted S-Dense.

M1: Undefended Dense CNN
M2: Adversarially trained S-Dense
M3: Sparse CNN with robust mask
!𝜽: MoE-CNN with robustified routers.

Insight 2: Improving routers’
robustness alone is NOT
sufficient for robust MoE
predictor although the former
makes a positive impact.

Q1: Is robustifying routers sufficient to achieve a robust MoE-CNN? Q2: Will robustly training expert weights bring benefits and does it further impact routers?

Ø AdvMOE: Router-Expert Alternating AT via BLO

Figure 5: Performance of
AdvMoE with different expert
number N and model scale r
on (CIFAR-10, ResNet18)

Table 1: Performance overview of AdvMOE vs. baselines on various datasets and architectures.

Figure 4: Robustness comparison of models trained with different
methods under various model scale settings.

Insight 3: routers’ robustness is NOT
automatically preserved if experts are updated.
Routers’ and experts’ robustness are not easy to
adapt to each other.

The current AT fails to (1) model and (2) optimize the coupling of the routers’ and experts’
robustness. We develop a new AT framework through bi-level optimization (BLO):

AdvMoE: alternatively optimizes the lower level (router) and upper level (experts).

ü Helps robust routers and experts “accommodate” to each other;
ü Makes sure routers and experts make concerted efforts to overall robustness;
ü Introduces no additional hyper-parameters.


