

Robust Mixture-of-Expert Training for Convolutional Neural Networks

Yihua Zhang¹, Ruisi Cai², Tianlong Chen^{2,3,4,5}, Guanhua Zhang⁶, Huan Zhang^{7,8}, Pin-Yu Chen⁹, Shiyu Chang⁶, Zhangyang Wang², Sijia Liu^{1,9}

PARIS Paper Code

¹Michigan State University, ²University of Texas at Austin, ³The University of North Carolina at Chapel Hill, ⁴MIT, ⁵Harvard University, ⁶UC Santa Barbara, ⁷Carnegie Mellon University, ⁸UIUC, ⁹IBM Research

Open Question

What will be the new insights into adversarial robustness of sparse MoE-integrated CNNs? What will be the suited AT mechanism?

Warm-Up: AT for MoE-CNN is not Trivial

Challenge: Naively applying AT to MoE-CNN is even less effective than an AT-resulted small dense network.

0.5

Model Scale

31.74%

0

5 90%

17.82%

0

0.2

44.53%

€

Robustness Dissection: Routers vs. Pathways

Q1: Is robustifying routers sufficient to achieve a robust MoE-CNN?

30

0.8

No

Yes

4 Yes

Successful

Attack on

MoE Router

No

Yes

No

Yes

₹20

Insight 1: Robustifying routers improves the overall robustness of MoE-CNN but is NOT as effective as AT-resulted S-Dense.

M1: Undefended Dense CNN M2: Adversarially trained S-Dense M3: Sparse CNN with robust mask $\overline{\theta}$: MoE-CNN with robustified routers.

Insight 2: Improving routers' robustness alone is NOT sufficient for robust MoE predictor although the former makes a positive impact.

Related Work

[1] Want et al., Deep mixture of experts via shallow embedding, UAI'22 [2] Puigcerver et al., On the adversarial robustness of mixture of experts, NeurIPS'22

Figure 1: Model types considered in this work, including the MoE-CNN, big dense model, pruned sparse model, and small dense model,

Q2: Will robustly training expert weights bring benefits and does it further impact routers?

Insight 3: routers' robustness is NOT automatically preserved if experts are updated. Routers' and experts' robustness are not easy to adapt to each other.

AdvMOE: Router-Expert Alternating AT via BLO

The current AT fails to (1) model and (2) optimize the coupling of the routers' and experts' robustness. We develop a new AT framework through bi-level optimization (BLO):

> minimize $\ell_{\text{TRADES}}(\boldsymbol{\psi}, \boldsymbol{\phi}^*(\boldsymbol{\psi}); \mathcal{D})$ subject to $\phi^*(\psi) = \arg \min_{\phi} \ell_{\text{TRADES}}(\psi, \phi; \mathcal{D}),$

AdvMoE: alternatively optimizes the lower level (router) and upper level (experts).

- ✓ Helps robust routers and experts "accommodate" to each other;
- ✓ Makes sure routers and experts make concerted efforts to overall robustness;
- ✓ Introduces no additional hyper-parameters.

4

Table 1: Performance overview of AdvMOE vs. baselines on various datasets and architectures

Figure 4: Robustness comparison of models trained with different methods under various model scale settings.

Figure 5: Performance of AdvMoE with different expert number N and model scale r on (CIFAR-10, ResNet18)

Experiment Results Highlights

Method	Backbone	RA (%)	SA (%)	GFLOPS(#)	Method	Backbone	RA (%)	SA (%)	GFLOPS (#)
CIFAR-10									
• AT (Dense)		50.13 ± 0.13	$82.99{\scriptstyle\pm0.11}$	0.54	• AT (Dense)		51.75 ± 0.12	$83.54{\pm}0.15$	5.25
• AT (S-Dense)	D N 10	48.12±0.09	80.18±0.11	0.14 (74%↓)	• AT (S-Dense)		50.66±0.13	82.24±0.10	1.31 (75%↓)
• AT (Sparse)	ResNet-18	47.93±0.17	80.45±0.13	0.14 (/4%↓)	• AT (Sparse)	WRN-28-10	48.95±0.14	82.44±0.17	1.31 (75%↓)
• AI (MoE)		45.57±0.51	78.84±0.75	0.15 (72%↓)	• AI (MoE)		46.73±0.46	77.42 ± 0.73	1.75 (67%‡)
 AdvMoE 		51.83 ±0.12	80.15 ± 0.11	0.15 (72%↓)	 ADVMOE 		55.73 ±0.13	84.32 ±0.18	1.75 (67%↓)
 AT (Dense) 		46.19 ± 0.21	82.18 ± 0.23	0.31	 AT (Dense) 		44.52 ± 0.14	74.97 ± 0.19	0.07
• AT (S-Dense)		45.72 ± 0.18	80.10±0.16	0.07 (77%↓)	 AT (S-Dense) 		38.07 ± 0.13	69.63 ± 0.11	0.02 (71%↓)
 AT (Sparse) 	VGG-16	46.13 ± 0.15	$79.32{\scriptstyle \pm 0.18}$	0.07 (77%↓)	 AT (Sparse) 	DenseNet	37.73 ± 0.13	67.35 ± 0.12	0.02 (71%↓)
 AT (MoE) 		43.37 ± 0.46	$76.49 {\pm} 0.65$	0.12 (61%↓)	• AT (MoE)		35.21 ± 0.74	64.41 ± 0.81	0.03 (57%↓)
 AdvMoE 		49.82 ±0.11	$80.03{\scriptstyle\pm0.10}$	0.12 (61%↓)	 ADVMOE 		39.97 ±0.11	70.13±0.15	0.03 (57%↓)
CIFAR-100									
 AT (Dense) 		27.23 ± 0.08	58.21 ± 0.12	0.54	 AT (Dense) 		27.90±0.13	57.60 ± 0.09	5.25
• AT (S-Dense)		26.41 ± 0.16	57.02 ± 0.14	0.14 (74%↓)	• AT (S-Dense)		26.30 ± 0.10	56.80 ± 0.08	1.31 (75%↓)
 AT (Sparse) 	ResNet-18	26.13 ± 0.14	57.24 ± 0.12	0.14 (74%↓)	 AT (Sparse) 	WRN-28-10	25.83 ± 0.16	57.39 ± 0.14	1.31 (75%↓)
• AT (MoE)		22.72 ± 0.42	53.34 ± 0.61	0.15 (72%↓)	• AT (MoE)		22.94 ± 0.55	53.39 ± 0.49	1.75 (67%↓)
• ADVMOE		28.05 ±0.13	$\textbf{57.73}{\scriptstyle \pm 0.11}$	0.15 (72%↓)	• ADVMOE		$\textbf{28.82} \pm 0.14$	$\textbf{57.56}{\scriptstyle \pm 0.17}$	1.75 (67%↓)
• AT (Dense)		22.37 ± 0.15	52.36 ± 0.17	0.31	 AT (Dense) 		21.72 ± 0.13	48.64 ± 0.14	0.07
• AT (S-Dense)		20.58 ± 0.13	48.89±0.14	0.07 (77%↓)	• AT (S-Dense)		16.86 ± 0.21	39.97 ± 0.11	0.02 (71%↓)
 AT (Sparse) 	VGG-16	21.12 ± 0.22	48.03 ± 0.17	0.07 (77%↓)	 AT (Sparse) 	DenseNet	17.72 ± 0.14	41.03 ± 0.16	0.02 (71%↓)
• AT (MoE)		19.34 ± 0.43	45.51 ± 0.75	0.12 (61%↓)	• AT (MoE)		$14.45 {\pm} 0.45$	36.72 ± 0.71	0.03 (57%↓)
 AdvMoE 		21.21±0.21	$48.33{\scriptstyle\pm0.17}$	0.12 (61%↓)	 ADVMOE 		23.31 ±0.11	48.97 ±0.14	0.03 (57%↓)
Tiny-ImageNet									
 AT (Dense) 		38.17 ± 0.14	53.81 ± 0.16	2.23	• AT (Dense)		38.82 ± 0.15	55.30 ± 0.19	21.0
ise)		36.29 ± 0.16	52.15 ± 0.13	0.55 (75%↓)	• AT (S-Dense)		37.09 ± 0.12	54.83 ± 0.16	5.26 (75%↓)
:)	ResNet-18	36.11 ± 0.13	50.75 ± 0.17	0.55 (75%↓)	• AT (Sparse)	WRN-28-10	37.32 ± 0.14	54.32 ± 0.23	5.26 (75%)
		34.41 ± 0.31	$47.73{\scriptstyle\pm0.41}$	0.75 (68%↓)	• AT (MoE)		33.31 ± 0.41	$49.91 {\pm} 0.52$	7.44 (65%↓)
1	Í	39.99 ±0.12	53.31 ± 0.14	0.75 (68%↓)	 ADVMOE 		40.15 ±0.15	55.18±0.09	7.44 (65%↓)
ImageNet									
)		44.64 ± 0.14	60.32 ± 0.15	1.82	• AT (Dense)		45.13±0.14	60.97 ± 0.16	16.1
ise)		41.19 ± 0.16	58.32 ± 0.12	0.48 (74%↓)	• AT (S-Dense)		41.72 ± 0.15	58.98 ± 0.18	4.04 (75%↓)
:)	ResNet-18	40.87 ± 0.15	58.22 ± 0.13	0.48 (74%↓)	• AT (Sparse)	WRN-28-10	39.88 ± 0.18	59.21±0.14	4.04 (75%↓)
,		35.57±0.73	55.47±0.66	0.67 (63%↓)	• AT (MoE)		37.42 ± 0.44	56.44 ± 0.71	5.15 (68%)
1		43.32 +0.12	59.72+0.17	0.67 (63%)	• ADVMOE		46.82 ±0.11	58 87±0.07	5 15 (68%)