IBM Research

uai2022

Motivations

Current accelerated AT algorithms all suffer from various problems.

✤ Distributed ML is effective for standard training.

Research Question

How to scale up Adversarial Training with distributed machine learning to large models and datasets?

DAT: A Distributed AT Framework

We present a general algorithmic framework for Distributed AT.

- ✤ We provide convergence analysis of DAT in general non-convex settings.
- Experiments in various AT settings
 - ✓ robust training on ImageNet
 - \checkmark semi-supervised AT
 - \checkmark certified robust training
 - \checkmark robust pretrain + finetuning

Problem Formulation

✤ Adversarial Training

$$\operatorname{minimize}_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x},t)\sim D} \left[\max_{|\boldsymbol{\delta}|_{\infty} \leq \epsilon} \ell_{\operatorname{tr}}(\boldsymbol{\theta}; \boldsymbol{x} + \boldsymbol{\delta}, t) \right]$$

Distributed Adversarial Training

$$\begin{split} \text{minimize}_{\boldsymbol{\theta}} & \frac{1}{M} \sum_{i=1}^{M} f_i(\boldsymbol{\theta}, D_i) \\ f_i &=: \mathbb{E}_{(\boldsymbol{x}, t) \sim D_i} [\lambda \ell_{\text{tr}}(\boldsymbol{\theta}; \boldsymbol{x}, t) + \max_{|\boldsymbol{\delta}|_{\infty} \leq \epsilon} \varphi(\boldsymbol{\theta}; \boldsymbol{x} + \boldsymbol{\delta}, t)] \end{split}$$

 f_i D_i $\{\boldsymbol{x} + \boldsymbol{\delta} : |\boldsymbol{\delta}|_{\infty} \leq \epsilon\}$ Local cost function at i-th worker Local dataset at i-th worker, $D = \bigcup_{i=1}^{M} D_i$ ℓ_{∞} adversarial attack with strength ϵ Balance between training loss and robustness.

Distributed Adversarial Training to Robustify Deep Neural Networks at Scale

Gaoyuan Zhang^{1*}, Songtao Lu^{1*}, Yihua Zhang², Xiangyi Chen³, Pin-Yu Chen¹, Quanfu Fan¹, Lee Martie¹, Lior Horesh¹, Mingyi Hong³, Sijia Liu^{1,2} ¹IBM Research, ²Michigan State University, ³University of Minnesota

Algorithmic Framework of DAT

Algorithm 1 Meta-version of DAT (Alg.	A1 in Supplement)
1: for Worker $i = 1, 2,, M$ do	⊳ Block 1
2: Sample-wise attack generation ((A1)
3: Local gradient computation (A2	2)
4: Worker-server communication	
5: end for	
6: Gradient aggregation at server (A3)	⊳ Block 2
7: Server-worker communication	
8: for Worker $i = 1, 2,, M$ do	▷ Block 3
9: Model parameter update (A4)	
10: end for	

Large-batch Challenge

Adversarial training suffers from performance degradation with large batches.

Solution: Layer-wise Adaptive Learning Rate

$$\theta_{t+1,i} = \theta_{t,i} - \tau(||\theta_{t,i}||_2) \cdot \eta_t \frac{u_{t,i}}{||u_{t,i}||_2}$$

 $\tau(||\theta_{t,i}||_2) = \min(\max((||\theta_{t,i}||_2, c_l), c_u))$ Gradient Quantization

Reduce computational costs by using fewer bits to store gradient information.

Challenges in Convergence Analysis

✤ Non-linear error coupling from:

 \checkmark gradient estimation \checkmark gradient quantization ✓ LALR \checkmark inner maximization oracle

Table 1. DAT (in gray color) on (ImageNet, ResNet-50) compared with baselines in Standard Accuracy (TA), Robust Accuracy against PGD (RA) and AutoAttack (AA), communication time per epoch (C) and total training time per epoch (T). ' $p \times q$ ' represents '# nodes \times # GPUs per node'.

Method	ImageNet, ResNet-50						
Wiethiod	p imes q	Batch size	TA (%)	RA (%)	AA (%)	C (s)	T (s)
AT	1×6	512	62.70	40.38	37.46	NA	6022
DAT-PGD w/o LALR	6×6	6 imes 512	57.09	34.02	30.98	865	1932
DAT-PGD	6×6	6 imes 512	63.75	38.45	36.04	898	1960
Fast AT	1×6	512	58.99	40.78	37.18	NA	1544
DAT-FGSM w/o LALR	6×6	6 imes 512	55.04	35.03	32.16	863	1080
DAT-FGSM	6×6	6 imes 512	58.02	40.27	36.02	859	1109

Method	Smooth classifier ($\sigma = 0.12$)						
Wiethou	r = 0.05	r = 0.1	r = 0.15	r = 0.2	r = 0.3	r = 0.4	r = 0.5
Baseline $(N = 2)$	0.832	0.804	0.762	0.728	0.654	0.545	0
DAT $(N = 20)$	0.838	0.812	0.784	0.748	0.661	0.550	0
Method	Smooth classifier ($\sigma = 0.25$)						
Wiethou	r = 0.05	r = 0.1	r = 0.15	r = 0.2	r = 0.3	r = 0.4	r = 0.5
Baseline $(N = 2)$	0.752	0.730	0.708	0.678	0.625	0.562	0.498
DAT $(N = 20)$	0.764	0.748	0.716	0.688	0.632	0.566	0.514

Met

DAT-DAT-F

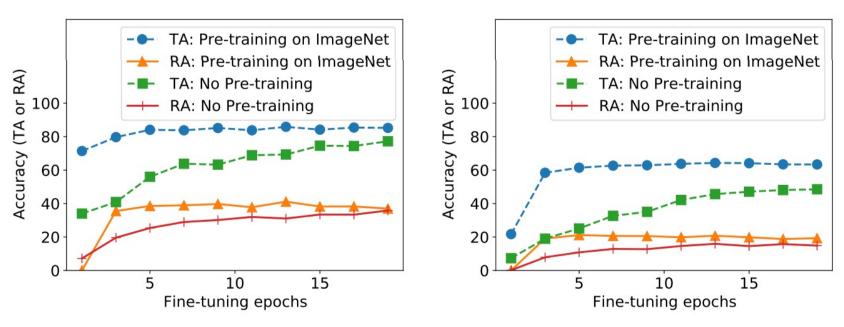
Met

DAT-DAT-F

 Table 4. Effect of gradient quantization on the performance of
DAT for various numbers of bits. The training and evaluation settings on (ImageNet, ResNet-50) are consistent with Table 1. The new performance metric 'Data trans. (MB)' represents data transmitted per iteration in the unit MB.

Method

DAT-PG DAT-PG DAT-PG DAT-PG DAT-PGD (DAT-FGS DAT-FGS DAT-FGS DAT-FGS DAT-FGSM



(a) Finetuning over CIFAR-10 (b) Finetuning over CIFAR-100 Figure 2. Fine-tuning ResNet-50 (pre-trained on ImageNet) under CIFAR-10 and CIFAR-100. Adversarial training on CIFAR from scratch is also presented. Here DAT-PGD is used for both pre-training and fine-tuning at 6 computing nodes.

Contact: {gaoyuan.zhang, songtao}@íbm.com, {zhan1908}@msu.edu

Table 2. Certified accuracy (%) of smooth classifiers on (CIFAR-10, ResNet-18) versus ℓ_2 radii.

 Table 3. DAT with semi-supervision using ResNet-18 or Wide
ResNet-28-10 under CIFAR-10 + 500K unlabeled Tiny Images.

thod	ResNet-18, batch size 12×2048						
ulou	TA (%)	RA (%)	AA (%)	C(s)	T(s)		
-PGD	87.00	47.34	45.23	86	451		
FGSM	88.00	45.84	43.19	86	124		
thod	Wide ResNet-28-10, batch size 12×128						
	TA (%)	RA (%)	AA (%)	C(s)	T(s)		
-PGD	89.37	62.06	58.35	302	1020		
FGSM	89.52	61.24	57.65	302	674		

od		ImageNet, ResNet-50				
ju ju	# bits	TA (%)	RA (%)	C (s)	Data	
	# Dits	IA(70)	$\mathbf{K}\mathbf{A}(\%)$	C (8)	trans. (MB)	
GD	32	63.75	38.45	898	2924	
GD	16	61.77	38.40	850	1462	
GD	8	56.53	37.90	592	731	
GD	8 (2-sided)	53.09	34.59	1091	244	
(HPC)	32	63.43	38.55	15	1074	
SM	32	58.02	40.27	859	2924	
SM	16	54.71	39.29	849	1462	
SM	8	50.11	36.38	594	731	
SM	8 (2-sided)	48.27	33.20	1013	244	
(HPC)	32	57.60	41.70	15	310	