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Zeroth-Order Optimization:
How to optimize without first-order gradient?
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* to tackle with black-box involved optimization, such as non-
differentiable physical simulators|[1].
* to unleash the potential of special hardware, such as ONNs|2]

(optical neural networks).

+* Gradient Estimator: CGE over RGE

» CGE uses basis vectors while RGE uses random vectors.
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» Experiments show that CGE outperforms RGE in terms of
accuracy given the same query budget

» Runtime profiling exhibits CGE’s efficiency merit over RGE
at the same number of queries
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Figure 1. Performance comparison on a Table 1. Comparison between CGE and RGE
simple CNN with varying numbers of from the perspective of accuracy, computation,
parameters on CIFAR-10. and query efficiency.

Reference [1] Kiwon Um et al., Solver-in-the-loop: Learning from differentiable physics to interact with iterative
pde-solvers. [2] Jiaqi Gu, et al., L.2ight: Enabling on-chip learning for optical neural networks via efficient in-situ

subspace optimization. [3] Chaoqgi Wang et al, Picking winning tickets before training by preserving gradient flow.

% DeepZero: Sparse Gradients Guided by ZO Pruning

» 'The disentanglement of weights within CGE is inherently
pruning-friendly.

» We extend a pruning-at-initialization method, GraSP [3], to its
Z0O version:
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» Guided by ZO-GraSP, we then introduce dynamic spatse
pattern, leading to sparse ZO gradient estimates

Algorithm 1 70-GraSP-Guided ZO Training

1: Get Sz0-Grasp through ZO-GraSP (3)

2: Obtain layer-wise pruning ratio Spyer based on Sz0.Grasp

3: for Epocht =0,1,2,...,7 — 1do

4: Randomly generate a sparse coordinate set Sy according to Spayer
5 for Iterations per epoch do

6: Obtain (Sparse-CGE) ?gé’(ﬂ) based on S;

7: Update model weights: 8 < 8 — aVe/(6)

8: end for

9: end for

#* Acceleration: Feature Reuse & Forward Parallel
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Figure 2. Forward Parallel: Queries are totally independent of each other and thus
can be easily parallelized without any performance loss. Feature Reuse: one can reuse

the feature immediately preceding the perturbed layer thanks to the minimum
coordinate-wise perturbation by CGE.

% Experiments and Applications
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Figure 3. DeepZero outperforms the computational-
graph-free baseline Pattern Search and computational-
graph-dependent non-BP methods (ResNet-20, CIFAR10).
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Figure 5. Computation cost of CGE-based ZO
training w/ Feature Reuse vs. w/o Feature Reuse.
Empirically, Feature Reuse can half the running time.
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Figure 4. Comparison between DeepZero and FO
training baselines on a ResNet-20 for CIFAR-10.

NON: Non-interactive training out of the simulation loop
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ZO-SOL: Solver-in-the-loop training via DeepZero

Figure 6. In physical simulation-involved tasks, DeepZero

enables ‘solver-in-the-loop’ training for non-differentiable
simulators.
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Figure 7. DeepZero
approaches the first-
order
loop’.
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