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» Dataset Pruning for Transfer Learning

+* Not all sources classes are necessaty or beneficiall!l

* Some source data could be harmful to downstream performance.
Removing specific source classes can improve transfer learning,

% Conventional dataset pruning lacks effectiveness on transfer learning.

* Conventional SOTA DP methods do NOT yield significant
improvement over random pruning on transfer learning.
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Figure 1. Transfer learning accuracy of existing DP methods on ImageNet
at different pruning ratios, where ResNet-101 is the source model.

» An Overview of Our Proposal
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» Research Question

* Existing method: brute-force based, effective but not affordable.

(Q) How can we extend DP to transfer learning with

high efficiency, broad applicability, and lossless or
even improved target performance?

Label Mapping for Supervised Pretraining

* Rationale behind the design: source data similar to downstream
data intend to contribute more during the transfer process.

Dataset selection as a voting process: each downstream training
data can vote for its most similar/relevant source training class.

* Label mapping through a pretrained small surrogate model.
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» Feature Mapping for Self-Supervised Pretraining

Data cluster as the basic pruning unit when labels are unavailable.
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= Voting based on the Distance in the Feature Space
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[1] S. Jain et al. “A data-based perspective on transfer learning.” CVPR 2023.
[2] S. Kim et al. “Coreset sampling from open-set for fine-grained self-supervised learning “ CVPR 2023

» Experiment Result Highlights
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Figure 2. Unstructured pruning trajectory given by test accuracy (%) vs. sparsity (%o) on various (dataset, model) pairs. The
performance of dense model and that of the best winning ticket are marked using dashed lines in each plot. The solid line
and shaded area of each pruning method represent the mean and variance of test accuracies over 3 trials.
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Dataset OxfordPets SUN397 Flowers102
Pruning Ratio | 0% 50% 60% 70% 80% 0% 50% 60% 70% 80% 0% 50% 60% 70% 80%
RANDOM 6232 6127 59.09 53.75 45.63 45.08 4354 39.81 8223 82.60 81.03 80.02
MODERATE 69.26 6337 6245 6331 57.42 4736 4573 4514 4423 40.82 85.17 8245 8145 81.69 8132
GRAND : 6442 63.34 61.14 5642 ) 45772 4558 4524 4172 . 82.85 8244 8214 8173
FM (ours) 69.92 69.99 7029 70.21 48.46 48.58 47.90 46.00 85.22 8542 84.37 84.61

Table 1. The downstream performance with different source data pruning ratios in the SSL pretraining setting. A randomly initialized RN-
101 is self-supervised pretrained using MOCO V2 on each full/pruned source dataset and finetuned on the downstream task through LP.

PruningRatio | 0%  20%  40%  60%  80%
Time s, 46 35 24 13
Consumption () | °*  (15%)) (35%)) (56%)) (76%))

Table 2. Time consumption of LM/FM to obtain the pretrained model.

The reported time consumption covers surrogate model (RN-18) training,
LM/FM dataset pruning, and source model pretraining (RN-101).

SUN397 DTD
Method Pruning Acc.(%) Time | Pruning Acc.(%) Time
Ratio Lp FF (h) Ratio Lp FF (h)
DENSE N/A 5145 5421 54 N/A 6591 6721 54
DENSE-ADV N/A 5297 5567 137 N/A 6723 6892 137
LM 70 5095 5428 19 50 6625 6722 29
LM-AbpvV 70 5207 5549 42 50 67.02 6854 6.7

Table 4. Downstream petformance of models pretrained on full/pruned
source dataset (Dense/LM) w/wo adversatial pretraining (Adv).
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Figure 3. Source dataset pruning trajectory given the
downstream task OxfordPets using different surrogate models.
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