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Revisiting and Advancing Fast Adversarial Training through the Lens of Bi-Level Optimization

How to design a ‘fast’ AT with improved stability,
mitigated catastrophic overfitting,

and theoretical guarantees?

ØMotivations Ø Customize Your Attack Loss : Fast-BAT!
v Linearization at 𝒛 with quadratic regularization:

ü One-step lower-level solver: unique, efficient, closed-form

ü Tractable IG with KKT conditions and Hessian-free assumption.
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v Fast-BAT Algorithm

ØFast-AT[1]: Live by ‘Sign’, Die from ‘Sign’ !
v Fast BAT with gradient sign-based linearization:

ü One-step lower-level solver: unique, efficient, closed-form

ü IG degrades to zero! BLO degrades to MMO!

ℓ‘!"# 𝜽, 𝜹 =< sign(∇𝜹 ℓ!"# 𝜽, 𝒛 ), 𝜹 − 𝒛 > +
𝜆
2 ||𝜹 − 𝒛||''

𝜹∗ 𝜽 = Proj)(𝒛 − ⁄(1 𝜆) sign(∇𝜹ℓ!"# 𝜽, 𝒛 ))

d𝜹∗ 𝜽 𝑻

d𝜃
= 0

v Fast-AT Algorithm

ü Sign operation is non-smooth that affects training stability!

ü Sign operation is sub-optimal for linearization!

v Why not use Fast-AT?

ØFast Robust Training: Not Enough!
v Low Stability;
v Robust Catastrophic Overfitting;
v Robustness at Cost of Sharp Drop in Accuracy.
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Table 1. Performance overview of proposed FAST-BAT vs. the baselines FAST-AT
[1] and FAST-AT-GA [2] on various datasets with PreActResNet-18.

Table 2. Performance comparison on CIFAR-10 with various model architectures.

Figure 2. Robustness against different
training attack strengths.

Figure 3. Training curves of Gradient
Alignment score. Fast-BAT achieves
‘gradient alignment’ for free!
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Figure 1. Visualization of adversarial loss landscapes (ResNet18, CIFAR10)

Paper Code

ü Presence of implicit gradient (IG): the ‘fingerprint’ of BLO

ü Customizable lower-level objectives: ℓ!"#≠ −ℓ"* !
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v Standard min-max formulation for adversarial training:
ØBi-level Optimization: A Fresh Perspective!

v Bi-level Optimization (BLO) framework:
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The upper-level gradient calculation:

IG: 𝜹∗ 𝜽 is an implicit function of 𝜽

ü BLO is hard to solve, lower-level constraint makes it harder!

IG

ü BLO is a generalization form of min-max optimization


